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Purification of correlated reduced density matrices

David A. Mazziotti
Department of Chemistry, Princeton University, Princeton, New Jersey 08544

~Received 3 August 2001; published 18 January 2002!

The notion of purification is generalized to treat correlated reduced density matrices. Traditionally, purifi-
cation denotes the process by which a one-particle reduced density matrix~1-RDM! is made idempotent, that
is, its eigenvalues are mapped to either 0 or 1. Purification of correlated RDMs is defined as the iterative
process by which an arbitrary RDM is forced to satisfy several necessaryN-representability conditions. Using
the unitary decomposition of RDMs and the positivity conditions, we develop an algorithm to purify the
2-RDM. The algorithm is applied within the solution of the contracted Schro¨dinger equation CSE for the
2-RDM @D. A. Mazziotti, Phys. Rev. A57, 4219 ~1998!#. Previous attempts to solve the CSE by powerlike
methods have frequently produced divergent energies, but we show that the purification process eliminates the
divergent behavior for systematic and reliable convergence of the contracted power method to theN-particle
energy.

DOI: 10.1103/PhysRevE.65.026704 PACS number~s!: 02.70.2c, 31.15.Ew, 31.10.1z, 31.25.2v
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I. INTRODUCTION

The two-particle reduced density matrix~2-RDM! for at-
oms and molecules has recently been computed dire
without the wave function through the 2,4-contracted Sch¨-
dinger equation~CSE! and density-matrix reconstructio
@1–19#. The CSE is a contraction of theN-electron Schro¨-
dinger equation onto the space of two quasielectrons. W
the CSE contains not only the 2-RDM but also the 3- and
4-RDMs, a strategy for solving the CSE has been develo
by reconstructing the 3- and the 4-RDMs from the 2-RD
through cumulant theory. Application of the CSE wi
density-matrix reconstruction has yielded the correlation
ergies for a variety of systems from atoms and molecule
spin models and random Hamiltonians.

From these calculations two general strategies h
emerged for the solution of the CSE after reconstruction:~i!
self-consistent iteration@2–9# and ~ii ! Newton’s method for
nonlinear equations@5,6,19#. For BeH2 Valdemoro, Tel, and
Perez-Romero obtained good convergence of the CSE
self-consistent iteration@4#, but Yasuda and Nakatsuji foun
that a self-consistent strategy often produced divergenc
the CSE and its energy@6#. Hence, Yasuda and Nakatsu
performed their calculations with a Newton’s method, whic
however, is more expensive and not without converge
issues@5,6,19#. We showed that the self-consistent iterati
of the CSE could be connected with the power method
eigenvalues, and we employed a contracted power metho
solve the CSE for Lipkin’s quasispin model. After examinin
various approaches for the CSE’s solution, we recently
signed a contracted power method that exhibits consis
and reliable convergence to theN-particle solution@20#. The
success of the contracted power method depends upon
purification of correlated RDMs that will be developed in
this paper.

The concept of purification is well known in the linea
scaling literature where it denotes the iterative process
which an arbitrary one-particle density matrix is project
onto an idempotent 1-RDM@21–24#. An RDM is said to be
pure N representable if it arises from the integration of
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N-particle density matrixCC* , whereC ~the preimage! is
an N-particle wave function@18,25,26#. Any idempotent
1-RDM is N representable with a unique Slater-determin
preimage. Within the linear-scaling literature the 1-RD
may be directly computed with unconstrained optimizati
where iterative purification imposes theN-representability
conditions @22–24#. Recently, we have shown that the
methods for computing the 1-RDM directly are related to t
solution of the 1,2-CSE by a contracted power method~1,2-
CSE is the contraction of the Schro¨dinger equation onto the
one-particle space! @27#. While purification for noninteract-
ing 1-RDMs was first pioneered by McWeeny in the la
1950s@21#, the concept has not been previously extended
correlated density matrices. We definepurification of corre-
lated RDMs as the iterative process by which an arbitra
p-particle density matrix is projected onto ap-RDM, which
obeys several necessary conditions forN representability.
Note that the wordnecessaryis used since the full set o
N-representability conditions for thep-RDM (p.1) is not
known. Although there is considerable literature on minim
ing the energy with respect to a 2-RDM, which is co
strained byN-representability conditions@17,18,25,26,28–
33#, the literature on correcting a 2-RDM, which is notN
representable, is not large@4,14,34,35#. The need for such
techniques is suggested by the iterative nature of the C
The extension of purification to the 2-RDM plays a role
the solution of the 2,4-CSE, which is analogous to the role
1-RDM purification in the solution of the 1,2-CSE.

McWeeny’s purification of the 1-RDM may be derive
with calculus or polynomial theory@27,36,37#, but the devel-
opment of purification methods for correlated RDMs r
quires different machinery including the unitary decompo
tion of RDMs @38–44#, cumulant reconstruction of RDMs
@8,9,12,15,19,45#, and the known 2-RDM positivity condi-
tions for N representability@17,46#. These concepts will be
reviewed as we develop an iterative algorithm for purifyi
correlated RDMs. The final method is illustrated by purif
ing a non-N-representable two-particle density matrix th
was obtained as an intermediate during a CSE calculation
H2O, and then we show that purification after each iterat
of the CSE dramatically improves the convergence of
contracted power method.
©2002 The American Physical Society04-1
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II. THEORY

Purification of the 2-RDM begins with checking that th
2-RDM contracts to a 1-RDM, which isN representable
After the 1-RDM is adjusted as shown in Sec. II A, the co
responding 2-RDM may be updated through the unitary
composition from Sec. II B. The 1-RDM determines throu
the unitary and cumulant decompositions different parts
the 2-RDM. In Sec. II D the remaining, two-particle portio
of the 2-RDM is purified through positivity conditions fo
the 2-RDM. Special considerations for purifying a 2-RD
with spin are discussed within the final section.

A. N representability of the 1-RDM

Some of the most importantN-representability conditions
on the 2-RDM arise from its relationship with the 1-RDM.
2-RDM must contract to a 1-RDM that isN representable,

1D5S 2

N21DL2
1~2D !. ~1!

The operatorL2
1, defined in the Appendix, denotes the co

traction operator that maps the 2-RDM to the 1-RDM. T
factor of (N21)/2 arises from the normalization of th
1-RDM and 2-RDM toN andN(N21)/2, respectively. The
N-representability conditions for the 1-RDM arise from t
particle-hole duality@17,47,48#. The expectation value of th
anticommutation relation for fermions,

ajai
†1ai

†aj5d j
i , ~2!

yields the relation between the elements of the 1-RDM,1D j
i ,

and the elements of the one-hole RDM,1D̄ j
i ,

1D̄ j
i 11D j

i 51I j
i , ~3!

where 1I is the identity matrix. Any 1-RDM is ensembleN
representable if and only if it is Hermitian with traceN and
both the 1-RDM and one-hole RDM are positive semide
nite @17,18,25,47,48#, which is denoted by

1D>0 ~4!

and

1D̄>0. ~5!

A matrix is positive semidefiniteif and only if all of its ei-
genvalues are non-negative. Because the 1-RDM and
one-hole RDM share the same eigenvectors, these two p
tivity restrictions are equivalent to constraining the occu
tion numbers of the 1-RDM to lie between 0 and 1@25#.

Purification of a trial 2-RDM with the 1-RDM condition
may be accomplished by contracting the 2-RDM as in E
~1! and checking that the eigenvalues of the 1-RDM lie b
tween 0 and 1. If the eigenvalues fall outside this interv
neither the 1-RDM nor the 2-RDM can beN representable
Any method for adjusting the 1-RDM occupation numbe
must preserve the trace of the 1-RDM, which is the num
N of particles. We have employed the following algorithm
02670
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effect this purification:~i! set all of the negative 1-RDM
eigenvalues to zero,~ii ! correct the trace by decreasing th
occupation number for the highest occupied orbital,~iii ! set
to 1 all 1-RDM eigenvalues that are greater than 1, and~iv!
correct the trace by increasing the occupation number for
lowest unoccupied orbital. We decrease the highest occu
orbital and increase the lowest unoccupied orbital since th
changes are unlikely to produce occupation numbers out
the @0,1# interval. This is only one reasonable approach
ensuring that the occupation numbers of the 1-RDM areN
representable; many variations on this simple strategy m
also be employed. Once the 1-RDM has been adjusted t
N representable, we need a method for modifying
2-RDM so that it contracts by Eq.~1! to the updated 1-RDM.
The appropriate modification of the 2-RDM may be acco
plished through the unitary decomposition of the 2-RD
which we discuss in the following section.

B. Unitary decomposition of the 2-RDM

Any two-particle Hermitian matrix2A may be decom-
posed into three components that exist in different subspa
of the unitary group. These components reveal the struc
of the matrix with respect to the contraction operati
@18,38–42#

2A52A012A112A2 , ~6!

where

2A05
2 Tr~2A!

r ~r 21!
2I , ~7!

2A15
4

r 22
1A∧1I 2

4 Tr~2A!

r ~r 22!
2I , ~8!

and

2A252A2
4

r 22
1A∧1I 1

2 Tr~2A!

~r 21!~r 22!
2I . ~9!

The one-particle matrix1A is the contraction of the two-
particle matrix 2A,

1A5L2
1~2A!, ~10!

the symbolr denotes the rank of the one-particle basis s
the wedge product∧ is defined in the Appendix, and

2I 51I ∧1I . ~11!

The zeroth component2A0 contains the trace information fo
2A,

L2
0~2A0!5Tr~2A0!5Tr~2A!, ~12!

and the first component2A1 contains the one-particle infor
mation for 2A except for the trace

L2
1~2A012A1!51A. ~13!
4-2
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The two-particle component of2A carries information that
vanishes upon contraction,

L2
1~2A2!50, ~14!

where 0 in this equation represents the zero matrix.
The unitary decomposition may be applied to any Herm

ian, antisymmetric two-particle matrix including the 2-RDM
the two-hole RDM, and the two-particle reduced Ham
tonian. The decomposition is also readily generalized to t
p-particle matrices@42–44#. The trial 2-RDM to be purified
may be written as

2D52D012D112D2 . ~15!

Note that if 2A52D in Eqs.~7!, ~8!, and~9!, then from Eqs.
~1! and ~13! we have that

1A5S N21

2 D 1D. ~16!

Using Eq.~8! and the adjusted 1-RDM from the precedin
section, we can construct a modified one-particle portion
the 2-RDM 2D1

a . Then the appropriate 2-RDM that contrac
to the adjusted 1-RDM is readily expressed as

2Da52D012D1
a12D2 . ~17!

Both the trace and one-particle subspaces of the 2-RDM
now N representable. Does the 1-RDM tell us anything ab
the two-particle component of the 2-RDM that vanish
when it is contracted to the one-particle space? Before
amining additionalN-representability conditions, we addre
this question in the following section.

C. Cumulant decomposition of the 2-RDM

The unitary decomposition is not the only approach
expressing the RDMs in terms of lower RDMs. Recently,
the context of the CSE, the 3- and the 4-RDMs have b
reconstructed from the 2-RDM through particle-hole dua
@1,2#, the Green’s function theory@5,6#, and the cumulant
theory@8,9,12,15,19,45#. Each of these approaches yields t
same decomposition for the 2-RDM,

2D51D∧1D12D, ~18!

where the elements of the 2-RDM are

2Dk,l
i , j 5 1

2 ^Cuai
†aj

†alakuC&. ~19!

The portion of the 2-RDM that may be expressed as a we
product of lower RDMs is said to beunconnected. The un-
connected portion of the 2-RDM contains an important p
tion of the two-particle component from the unitary deco
position 2D2 , and similarly, the trace and one-partic
unitary components contain an important portion of the c
nected 2-RDM2D, which corrects the contraction. Both d
compositions may be synthesized by examining the uni
decomposition of the connected 2-RDM,

2D52D012D112D2 . ~20!
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The trace and the one-particle components of the conne
2-RDM are completely determined by the 1-RDM. Hence
is the two-particle unitary subspace of the connected 2-RD
that may require further purification.

Similarly, the cumulant decomposition for the two-ho
RDM is

2D̄51D̄∧1D̄12D̄, ~21!

where the elements of the two-hole RDM are

2D̄k,l
i , j 5 1

2 ^Cualakai
†aj

†uC&. ~22!

With the anticommutation relation for fermions in Eq.~2!
and the second-quantized definitions, it has been shown
the connected portions of the two-particle and two-h
RDMs are equal@1,7,49#,

2D̄52D ~23!

It follows forthwith that

2D̄252D2 . ~24!

Therefore, we have the important fact thatfor a fixed 1-RDM
any correction to the 2-RDM will also be a correction to th
two-hole RDM. In the following section we use this fact i
purifying the 2-RDM to satisfy twoN-representability re-
strictions.

D. N representability of the 2-RDM

Two significant N-representability conditions on th
2-RDM are that both the two-particle and the two-ho
RDMs must be positive semidefinite,

2D>0 ~25!

and

2D̄>0. ~26!

In theN-representability literature these positivity conditio
are known as theD and theQ conditions @17,26,46,48#.
More details on positivity may be found in Ref.@17#, where
the concept of positivity and its connection to the generaliz
uncertainty relations is developed. The two-particle RD
and the two-hole RDM are linearly related via the partic
hole duality

2D̄52I 22 1D∧1I 12D. ~27!

If the trial 2-RDM does not obey theD condition, then it has
a set of eigenvectors$v i% whose associated eigenvalues a
negative. Hence, we can construct a set of two-particle
trices$2Oi%

2Oi5v iv i
† , ~28!

for which

Tr~2Oi
2D !,0. ~29!
4-3
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Each member of the set$2Oi% is said toexposethe 2-RDM
@18,50#. Similarly, if the trial 2-RDM does not obey theQ
condition, then the two-hole RDM has a set of eigenvect
$v̄ i% whose associated eigenvalues are negative. The barv̄ i
simply distinguishes the eigenvectors of the two-hole RD
from those of the 2-RDM; it does not denote the adjoint
set of two-hole matrices$2Ōi% may be generated,

2Ōi5 v̄ i v̄ i
† , ~30!

for which

Tr~2Ōi
2D̄ !,0. ~31!

As with the D condition, each member of the set$2Ōi% is
said to expose the two-hole RDM.

The 2-RDM may be made positive semidefinite if each
the negative eigenvalues is set to zero, but this alters not
the positivity but also the contraction of the 2-RDM to th
1-RDM and even the 2-RDM trace. How can we modify t
2-RDM to prevent it from being exposed by the set$2Oi%
and yet maintain contraction to theN-representable 1-RDM?
Again we can employ the unitary decomposition. For a m
trix 2Oi the decomposition is

2Oi5
2Oi ;012Oi ;112Oi ;2 . ~32!

Making the 2-RDM eigenvalue associated withv i equal to
zero is equivalent to adding an appropriate amount of2Oi to
the 2-RDM. However, this also changes the trace and
underlying 2-RDM because2Oi contains the zeroth and th
first components of the unitary decomposition. We c
modify the two-particle component only by adding just2Oi ;2
rather than 2Oi . The adjusted 2-RDM may then be e
pressed as

2Da52D1(
i

a i
2Oi ;2 , ~33!

where the set of coefficients is determined from the sys
of linear equations

Tr~2Oi
2Da!50 ; i . ~34!

Although the adjusted 2-RDM is not exposed by any of
matrices in the set$2Oi%, in general, there will be new eigen
vectors with negative eigenvalues. However, these nega
eigenvalues are, in general, smaller than those of the u
justed 2-RDM. Hence, by repeating this processiteratively,
the 2-RDM may be purified so that theD condition is satis-
fied without modifying the contraction.

Analogously, the two-hole matrices in the set$2Ōi% may
be decomposed,

2Ōi5
2Ōi ;012Ōi ;112Ōi ;2 . ~35!

To impose only theQ condition, we have an adjusted two
hole RDM
02670
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b i
2Ōi ;2 , ~36!

whose coefficients are determined from the system of lin
equations

Tr~2Ōi
2D̄a!50 ; i . ~37!

One possibility for imposing both theD and theQ conditions
is to update the 2-RDM via Eqs.~33! and ~34!, convert the
2-RDM to the two-hole RDM, update the two-hole RDM v
Eqs.~36! and~37!, and then to repeat this process until co
vergence. However, this alternating approach does not
ally show good convergence since the 2-RDM changes o
damageQ positivity and the two-hole RDM changes ofte
adversely affectD positivity. A better approach would be t
impose both theD and theQ updatessimultaneously.

A simultaneous purification with respect to both theD and
theQ conditions may be achieved by using the fact that fo
fixed 1-RDM any correction to the 2-RDM will also be
correction to the two-hole RDM and vice versa. This su
gests that we write the adjusted 2-RDM as

2Da52D1(
i

a i
2Oi ;21(

i
b i

2Ōi ;2 , ~38!

where the expansion coefficients are determined by solv
the linear equations in both Eqs.~34! and ~37! simulta-
neously. Note that the linear mapping between the 2-RD
and the two-hole RDM must be employed in Eq.~37!. The
resulting adjusted 2-RDM will not be exposed by either t
operators$2Oi% or, in its two-hole form, the operators$2Ōi%.
Repeated application of this purification produces a 2-RD
that satisfies, to a specified tolerance, theD and Q condi-
tions.

E. Spin of the 2-RDM

The RDMs for atoms and molecules have a special str
ture from the spin of the electrons. To each spatial orbital,
associate a spin of eithera or b. Because the two spins ar
orthogonal upon integration of theN-particle density matrix,
only RDM blocks where the net spin of the upper indic
equals the net spin of the lower indices do not vanish. Hen
a p-RDM is block diagonal with (p11) nonzero blocks.
Specifically, the 1-RDM has two nonzero blocks, ana block
and ab block,

1Da, j
a,i Þ0, 1Db, j

b,i Þ0, ~39!

and the 2-RDM has three nonzero blocks, ana/a block, an
a/b block, and ab/b block,

2Da, j ;a,l
a,i ;a,kÞ0, 2Da, j ;b,l

a,i ;b,kÞ0, 2Db, j ;b,l
b,i ;b,kÞ0. ~40!

The spin structure enhances computational efficiency s
each of the blocks may be purified separately.

For the remainder of this section we treat closed-sh
atoms and molecules where thea and theb spins are indis-
tinguishable. Because thea and theb blocks of the 1-RDM
4-4
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PURIFICATION OF CORRELATED REDUCED DENSITY . . . PHYSICAL REVIEW E65 026704
are equal, we need only purify the eigenvalues for one
these blocks. As in Sec. II A the eigenvalues of the 1-RD
must lie in the interval@0,1# with the trace of each block
equal toN/2. Similarly, with thea/a and theb/b blocks of
the 2-RDM being equal, only one of these blocks requi
purification. The purification of either block is the same as
Sec. II D with the normalization beingN(N/221)/4. The
unitary decomposition ensures that thea/a block of the
2-RDM contracts to thea component of the 1-RDM. The
purification of Sec. II D, however, cannot be directly appli
to thea/b block of the 2-RDM since the spatial orbitals a
not antisymmetric; for example, the element with upper
dices a,i,b,i is not necessarily zero. One possibility is
apply the purification to the entire 2-RDM. While this pro
cedure ensures that the whole 2-RDM contracts correctl
the 1-RDM, it does not generally produce a 2-RDM who
individual spin blocks contract correctly. Usually the over
1-RDM is correct only because thea/a-spin block has a
contraction error, which cancels with the contraction er
from thea/b-spin block.

A better strategy is to introduce a modified unitary d
composition for thea/b block. An appropriate decompos
tion is

2D0
a,b5

Tr~2Da,b!

r s
2

1I a
a 1I b

b , ~41!

2D1
a,b5

1

r s
F 1Da

a2
Tr~1Da

a!

r s

1I a
aG 1I b

b

1
1

r s

1I a
aF 1Db

b2
Tr~1Db

b!

r s

1I b
bG , ~42!

and

2D2
a,b52Da,b22D1

a,b22D0
a,b , ~43!

wherer s denotes the number of spatial orbitals, which equ
half the numberr of spin orbitals. Like the unitary decom
position for antisymmetric matrices in Sec. II B, the zero
component2D0

a,b contains the trace information

L2
0~2D0

a,b!5Tr~2D0
a,b!5Tr~2Da,b!, ~44!

and the first component2D1
a,b contains the one-particle in

formation except for the trace

L2
1~2D0

a,b12D1
a,b!5

N

2
1Da

a . ~45!

The two-particle component of2Da,b carries information
that vanishes upon contraction,

L2
1~2D2

a,b!50, ~46!

where the 0 represents the zero matrix. The purification p
cess for the 2-RDM’sa/b block remains the same as d
scribed in Sec. II D except that the decomposition in E
~41!–~43! is employed.
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III. APPLICATIONS

The purification of correlated RDMs may be illustrate
through the solution of the CSE by the contracted pow
method. In each iteration of theN-particle power method, a
new trial wave function is produced through the applicati
of the Hamiltonian to the current trial wave function@51#.
Analogously, in each iteration of the contracted pow
method we generate a new trial 2-RDM by applying t
Hamiltonian to the current 2-RDM through the CSE wi
reconstruction@7,20#. We employ the second-order corre
tion for the 3-RDM in Refs.@12,15#. After each iteration of
the CSE we apply the purification algorithm to improve t
positivity of the two-particle and the two-hole RDMs
Known as theD and theQ conditions, respectively, thes
positivity constraints are necessary for a 2-RDM to cor
spond to anN-particle density matrix. Additional details con
cerning the contracted power method for solving the C
will be presented elsewhere@20#. Here we focus on~i! dem-
onstrating the 2-RDM purification algorithm and~ii ! illus-
trating its role in stabilizing the convergence of the co
tracted power iterations~or CSE iterations!.

With the contracted power method for the CSE, the wa
molecule is treated in its equilibrium geometry@52# where
the integrals for a split-valence double-zeta basis set@53# are
computed withPC GAMESS @54#, an implementation of the
quantum chemistry packageGAMESS ~USA! @55#. From the
final iteration of the CSE Fig. 1~a! reports theD- and the
Q-positivity errors in thea/a block of the 2-RDM as func-
tions of the purification iterations; Fig. 1~b! gives these er-
rors for thea/b block. TheD-positivity error in a spin block
is the magnitude of the block’s most negative eigenva
after the block has been mapped to the two-hole RDM
Eq. ~27!. With just eight iterations, the purification decreas
the errors in theD and theQ conditions for thea/a block by
an order of magnitude to less than 1025, and with 20 itera-
tions the errors in theD and theQ conditions for thea/b
block are decreased by almost two orders of magnitude.

The purification algorithm also improves the positivity fo
each molecule given in Tables I and II. All molecules a
computed with equilibrium geometries@52# in a split-valence
double-zeta basis set@53# except for N2 and CO, which are
treated with Slater-type orbitals expanded in six Gaussi
@54,55#. From the final CSE iteration for each molecul
Tables I and II give the positivity errors in theD and theQ
conditionsbeforeandafter purification. The purification al-
gorithm consistently decreases the error in theD and theQ
conditions by more than one order of magnitude. Purificat
of the a/a block generally requires fewer iterations than t
purification of thea/b block. Further details of these calcu
lations and the contracted power method that are not spe
to purification will be presented elsewhere@20#.

The data presented demonstrates the effectiveness o
purification algorithm as a general tool for imposin
N-representability conditions iteratively upon the 2-RDM
More specifically, we now examine the effect of purificatio
on solving the CSE by the contracted power method. For
H2O molecule Figs. 2~a! and 2~b! report theD- and the
Q-positivity errors in thea/b block as functions of the CSE
4-5
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iterations. Both theD- and theQ-positivity errors reveal tha
purification increases significantly with the number of CS
iterations. By the final iteration the two-particle and the tw
hole RDMs are purified by nearly two orders of magnitud
Figure 3 shows the ground-state electronic energy for H2O as
a function of the CSE iterations bothwith andwithout puri-
fication. While the CSE with purification captures 92.8%

FIG. 1. From the final iteration of the CSE~a! the D- and the
Q-positivity errors in thea/a block of the 2-RDM are reported a
functions of the purification iterations,~b! the D- and the
Q-positivity errors in thea/b block are given.
02670
-
.

f

the correlation energy, the CSEwithout purification obtains
only 71.2% of the correlation energy before diverging. A
though the unpurified energy increases after its minimum
the case of water, the energy without purification has a
been observed to decrease significantly below the f
configuration-interaction energy. The contracted pow
method with purification, overcoming the convergence pro
lems reported by Yasuda and Nakatsuji@6,10,19#, displays
consistent and reliable movement towards theN-particle so-
lution at each CSE iteration.

IV. CONCLUSIONS

Purification, both as a concept and an algorithm, has b
developed for correlated reduced density matrices. The t
purification typically refers to the process of making
1-RDM idempotent. This kind of purification, originating i
McWeeny’s work@21#, is significant in the modern linear
scaling literature@22–24# where it enforces 1-RDMN repre-
sentability. Every idempotent 1-RDM isN representable with
a unique preimage, which is anN-particle Slater determinant
We definepurificationof correlatedRDMs to be the iterative
process by which an arbitraryp-particle density matrix is
projected onto ap-RDM, which obeys significant necessa
conditions forN representability. In this paper we develope
a purification algorithm for the 2-RDM although the ide
presented are readily extended to the purification of hig
RDMs.

The purification procedure for the 2-RDM first chec
whether it contracts to anN-representable 1-RDM. If the
1-RDM requires adjustment, the 2-RDM is updated throu
the unitary decomposition, which reveals the portion of t
2-RDM that contributes to the 1-RDM via contraction. Whe
combined with the cumulant formula for the 2-RDM, th
unitary decomposition determines all of the 2-RDM exce
the two-particle unitary portion of the connected 2-RDM
The remaining 2-RDM portion may be further purifie
through the satisfaction of 2-RDM positivity conditions. W
employ theD condition and theQ condition ~from particle-
hole duality! on the 2-RDM although additional conditions
such as theG condition, may also be incorporated@17#. The
trial 2-RDM and its two-hole RDM have negative eigenva
TABLE I. Purification of two-particle and two-hole RDMsa/a block

Molecule

Number of
purification
iterations

Lowest eigenvalue

2Da,a
a,a 2D̄a,a

a,a

Initial Final Initial Final

BeH2 15 28.8131025 28.5531026 24.1931024 29.0931026

BH 13 21.7431024 29.4531026 24.3031024 26.7431026

CH4 18 23.9531024 29.6531026 22.8331024 28.9131026

CO 5 5.7131025 21.29310212 21.1831024 26.8731026

H2O 19 22.1831024 21.2131025 21.8231024 27.6531026

HF 7 29.9331025 28.6231026 27.1331025 27.5031026

N2 5 8.3331025 24.16310212 21.4331024 26.7831026

NH3 13 22.9231024 29.2731026 23.2531024 27.6531026
4-6
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TABLE II. Purification of two-particle and two-hole RDMsa/b block

Molecule

Number of
purification
iterations

Lowest eigenvalue

2Da,b
a,b 2D̄a,b

a,b

Initial Final Initial Final

BeH2 20 25.2131024 24.8631025 24.9531024 22.9231025

BH 14 27.0431024 28.5131025 25.9531024 27.1031025

CH4 20 21.1931023 21.3531025 25.7731024 21.2431025

CO 8 1.3531024 21.03310213 21.1631024 29.7531026

H2O 17 21.0831023 22.4431025 29.8231024 21.7631025

HF 18 26.9931024 29.6931026 25.7731024 29.4831026

N2 20 1.7731024 22.50310213 21.0731024 29.9031026

NH3 20 21.0631023 21.1631025 29.2631024 21.0331025
at
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ues whose eigenvectors correspond to the two-particle m
ces that expose the 2-RDM. Through the unitary decom
sition a procedure is developed whereby the 2-RDM
adjusted, without modifying its contraction to the 1-RDM,
prevent it from being exposed by a certain set of operat
Repeating this process systematically purifies the 2-RDM

The contracted power method employs purification
solving the 2,4-CSE for the 2-RDM. Purification of corr
lated 2-RDMs works with the reconstruction of the 3- a

FIG. 2. TheD- and theQ-positivity errors in thea/b block are
reported in~a! and ~b!, respectively, as functions of the CSE iter
tions.
02670
ri-
o-
s

s.

the 4-RDMs to enable the solution of the 2,4-CSE f
N-particle information. While other schemes for solving t
2,4-CSE by self-consistent iteration have exhibited conv
gence problems@6,10,19#, the contracted power method wit
purification moves systematically and reliably towar
N-particle energies and 2-RDMs. The change in the 2-RD
in the contracted power method is essentially a ‘‘gradien
which minimizes theN-particle energy@20#. The purification
does not interfere with this ‘‘gradient’’ but rather improves
through the removal of the portion that does not preservN
representability. The good CSE convergence for BeH2 ob-
tained by Valdemoro, Tel, and Perez-Romero is most lik
due to an implicit purification of the 2-RDM present in the
RDM ‘‘renormalization’’ methods, which fix the trace an
the positivity of the diagonal elements@4,14,19#. Applying
the contracted power method for the molecule H2O without
purification produces a premature minimum in the ener
which is followed by divergence while the same calculati
with purification yields an accurate, stable solution of t
CSE. Further results and details of the contracted po
method will be presented elsewhere@20#.

More than a useful tool in solving the CSE, purificatio

FIG. 3. The ground-state electronic energy for H2O is shown as
a function of the CSE iterations bothwith andwithout purification.
The CSE with purification captures 92.8% of the correlation ene
but the CSEwithout purification achieves only 71.2% of the corre
lation energy before diverging.
4-7
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offers a general approach for imposingN-representability
conditions on reduced density matrices. Traditional work
energy optimization with the 2-RDM employs th
N-representability conditions as constraints on the minimi
tion @30–32#. While new techniques for positive semidefini
programming have been recently developed by the app
mathematics community@56,57#, constrained optimization o
the N-particle energy is still computationally challengin
@17,33#. Linear-scaling algorithms for Hartree-Fock an
density-functional theories were realized when purificat
permitted the incorporation of 1-RDMN-representability
conditions into an unconstrained energy minimization@22–
24#. Similarly, purification of correlated 2-RDMs provides a
iterative, unconstrained approach to the enforcement
N-representability conditions, which promises further a
vances in reduced density-matrix methods for correla
many-body systems.
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APPENDIX: WEDGING AND CONTRACTING

An important tool in many-body theory is the antisymm
trized tensor product, known as the wedge~or Grassmann!
product@7,18,58#, which is denoted by the symbol∧. Con-
sider the wedge product between two matrices1A and 1B,

2C51A∧1B. ~A1!

The elementsck,l
i , j of 2C may be computed fromak

i andbl
j by

summing the distinct products arising from all antisymmet
permutations of the upper and the lower indices. For
wedge product of one-particle matrices there are only f
distinct possibilities,
ys

um

ji

02670
n

-

d

n

of
-
d

r-
r.
t.

e
r

2ck,l
i , j 5 1

4 ~ak
i bl

j2al
ibl

j2ak
j bl

i1al
jbk

i !. ~A2!

In general, the elements of the wedge product may be
pressed as

aj 1 , j 2 ,...,j p

i 1 ,i 2 ,...,i p ∧bj p11,...,j N

i p11 ,...,i N

5S 1

N! D
2

(
p,s

e~p!e~s!psaj 1 , j 2 ,...,j p

i 1 ,i 2 ,...,i p b
j p11 ,...,j N

i p11,...,i N , ~A3!

wherep represents all permutations of the upper indices a
s represents all permutations of the lower indices while
function e~p! returns11 for an even number of transpos
tions and21 for an odd number of transpositions. The to
number of permutations is (N!) 2; hence, the division by this
factor for normalization. If elements of the matricespA and
N2pB are assumed antisymmetric, then the total numbe
distinct permutations is@N!/( p!(N2p)!) #2, which we
would employ for the normalization. Other symmetries m
also be incorporated into the definition with an appropri
change in the normalization~i.e., whenpA5N2pB!.

A tool complementary to the wedge product in man
body theory is the contraction operator, which we denote
L. Consider the contraction of aN-particle matrix NA to a
p-particle matrix pB,

pB5LN
p ~NA!. ~A4!

The contraction operator generates the elements ofpB from
the elements ofNA by the prescription

bj 1 , j 2 ,...,j p

i 1 ,i 2 ,...,i p 5 (
i p11 ,...,i N

aj 1 ,...,j p ,i p11 ,...,i N

i 1 ,...,i p ,i p11 ,...,i N . ~A5!

The operatorL provides a convenient notation for discussi
the contraction mapping without a plethora of indices.
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